Programmed death-1/Programmed death ligand-1 (PD-1/PD-L1)
Synonyms
Treatment-related enhancement
Treatment-related changes
Definitions
Treatment-related increase in contrast enhancement mimicking tumor progression
Classically described in malignant glioma after chemoradiation [temozolomide with radiotherapy (XRT)]
May occur in malignant glioma or metastatic disease after treatment with immunotherapy (i.e., PD-1/PD-L1 inhibitors)
Typically occurs within 3-6 months after conclusion of XRT or immunotherapy
Self-limited, enhancing lesions resolve without new treatment
IMAGING
General Features
MR Findings
Imaging Recommendations
DIFFERENTIAL DIAGNOSIS
PATHOLOGY
General Features
Gross Pathologic & Surgical Features
CLINICAL ISSUES
Presentation
Natural History & Prognosis
Treatment
DIAGNOSTIC CHECKLIST
Consider
Selected References
Simard JL et al: Pseudoprogression of melanoma brain metastases. Curr Oncol Rep. 20(11):91, 2018
Thust SC et al: Pseudoprogression of brain tumors. J Magn Reson Imaging. 48(3):571-89, 2018
Wang Q et al: Pseudoprogression and hyperprogression after checkpoint blockade. Int Immunopharmacol. 58:125-35, 2018
Aquino D et al: MRI in glioma immunotherapy: evidence, pitfalls, and perspectives. J Immunol Res. 2017:5813951, 2017
Boxerman JL et al: Response assessment and magnetic resonance imaging issues for clinical trials involving high-grade gliomas. Top Magn Reson Imaging. 24(3):127-36, 2015
Galldiks N et al: Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 42(5):685-95, 2015
Melguizo-Gavilanes I et al: Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? J Neurooncol. 123(1):141-50, 2015
Park JE et al: Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology. 275(3):792-802, 2015
Radbruch A et al: Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol. 17(1):151-9, 2015
Shiroishi MS et al: Principles of T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging. 41(2):296-313, 2015
Yun TJ et al: Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. 274(3):830-40, 2015
Boxerman JL et al: Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol. 40(3):228-34, 2014
Cha J et al: Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol. 35(7):1309-17, 2014
Gahramanov S et al: Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival. CNS Oncol. 3(6):389-400, 2014
Lin AL et al: Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro Oncol. 16(1):123-30, 2014
Nasseri M et al: Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol. 16(8):1146-54, 2014
Chu HH et al: Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 269(3):831-40, 2013
Gahramanov S et al: Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology. 266(3):842-52, 2013
Motegi H et al: IDH1 mutation as a potential novel biomarker for distinguishing pseudoprogression from true progression in patients with glioblastoma treated with temozolomide and radiotherapy. Brain Tumor Pathol. 30(2):67-72, 2013
Suh CH et al: Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol. 34(12):2278-86, 2013
Jahangiri A et al: Pseudoprogression and treatment effect. Neurosurg Clin N Am. 23(2):277-87, viii-ix, 2012
Hygino da Cruz LC Jr et al: Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 32(11):1978-85, 2011
Brandsma D et al: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9(5):453-61, 2008
Related Anatomy
Loading...
Related Differential Diagnoses
Loading...
References
Tables
Tables
KEY FACTS
Terminology
Imaging
Top Differential Diagnoses
Clinical Issues
TERMINOLOGY
Abbreviations
Pseudoprogression (PsP)
Programmed death-1/Programmed death ligand-1 (PD-1/PD-L1)
Synonyms
Treatment-related enhancement
Treatment-related changes
Definitions
Treatment-related increase in contrast enhancement mimicking tumor progression
Classically described in malignant glioma after chemoradiation [temozolomide with radiotherapy (XRT)]
May occur in malignant glioma or metastatic disease after treatment with immunotherapy (i.e., PD-1/PD-L1 inhibitors)
Typically occurs within 3-6 months after conclusion of XRT or immunotherapy
Self-limited, enhancing lesions resolve without new treatment
IMAGING
General Features
MR Findings
Imaging Recommendations
DIFFERENTIAL DIAGNOSIS
PATHOLOGY
General Features
Gross Pathologic & Surgical Features
CLINICAL ISSUES
Presentation
Natural History & Prognosis
Treatment
DIAGNOSTIC CHECKLIST
Consider
Selected References
Simard JL et al: Pseudoprogression of melanoma brain metastases. Curr Oncol Rep. 20(11):91, 2018
Thust SC et al: Pseudoprogression of brain tumors. J Magn Reson Imaging. 48(3):571-89, 2018
Wang Q et al: Pseudoprogression and hyperprogression after checkpoint blockade. Int Immunopharmacol. 58:125-35, 2018
Aquino D et al: MRI in glioma immunotherapy: evidence, pitfalls, and perspectives. J Immunol Res. 2017:5813951, 2017
Boxerman JL et al: Response assessment and magnetic resonance imaging issues for clinical trials involving high-grade gliomas. Top Magn Reson Imaging. 24(3):127-36, 2015
Galldiks N et al: Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 42(5):685-95, 2015
Melguizo-Gavilanes I et al: Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? J Neurooncol. 123(1):141-50, 2015
Park JE et al: Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology. 275(3):792-802, 2015
Radbruch A et al: Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol. 17(1):151-9, 2015
Shiroishi MS et al: Principles of T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging. 41(2):296-313, 2015
Yun TJ et al: Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. 274(3):830-40, 2015
Boxerman JL et al: Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol. 40(3):228-34, 2014
Cha J et al: Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol. 35(7):1309-17, 2014
Gahramanov S et al: Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival. CNS Oncol. 3(6):389-400, 2014
Lin AL et al: Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro Oncol. 16(1):123-30, 2014
Nasseri M et al: Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol. 16(8):1146-54, 2014
Chu HH et al: Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 269(3):831-40, 2013
Gahramanov S et al: Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology. 266(3):842-52, 2013
Motegi H et al: IDH1 mutation as a potential novel biomarker for distinguishing pseudoprogression from true progression in patients with glioblastoma treated with temozolomide and radiotherapy. Brain Tumor Pathol. 30(2):67-72, 2013
Suh CH et al: Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol. 34(12):2278-86, 2013
Jahangiri A et al: Pseudoprogression and treatment effect. Neurosurg Clin N Am. 23(2):277-87, viii-ix, 2012
Hygino da Cruz LC Jr et al: Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 32(11):1978-85, 2011
Brandsma D et al: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9(5):453-61, 2008
STATdx includes over 200,000 searchable images, including x-ray, CT, MR, and ultrasound images. To access all images, please log in or subscribe.