Antiangiogenic agents may substantially reduce contrast enhancement in glioblastoma (GBM) related to reduced vascular permeability rather than actual tumor response
Bevacizumab (Avastin): Anti-VEGF antibody is main antiangiogenic agent currently used for treatment of recurrent malignant gliomas
Cediranib: VEGF receptor tyrosine kinase inhibitor; has been tested in recent high-grade glioma treatment trials with similar effects
Enzastaurin: Inhibits protein kinase C-β; non-VEGF antiangiogenic agent
IMAGING
General Features
MR Findings
Imaging Recommendations
DIFFERENTIAL DIAGNOSIS
PATHOLOGY
General Features
CLINICAL ISSUES
Presentation
Natural History & Prognosis
DIAGNOSTIC CHECKLIST
Consider
Image Interpretation Pearls
Selected References
Auer TA et al: Evaluation of the apparent diffusion coefficient in patients with recurrent glioblastoma under treatment with bevacizumab with radiographic pseudoresponse. J Neuroradiol. 46(1):36-43, 2019
Strauss SB et al: Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Radiol Clin North Am. 57(6):1199-216, 2019
van Dijken BRJ et al: Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging. 49(1):11-22, 2019
Kong Z et al: Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas. Neuroimage Clin. 20:51-60, 2018
Barajas RF Jr et al: Assessing biological response to bevacizumab using 18F-fluoromisonidazole PET/MR imaging in a patient with recurrent anaplastic astrocytoma. Case Rep Radiol. 2015:731361, 2015
Boxerman JL et al: Response assessment and magnetic resonance imaging issues for clinical trials involving high-grade gliomas. Top Magn Reson Imaging. 24(3):127-36, 2015
Ellingson BM et al: Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: a multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma. Int J Oncol. 46(5):1883-92, 2015
Hygino da Cruz LC Jr et al: Neuroimaging and genetic influence in treating brain neoplasms. Neuroimaging Clin N Am. 25(1):121-40, 2015
Stadlbauer A et al: Quantification of serial changes in cerebral blood volume and metabolism in patients with recurrent glioblastoma undergoing antiangiogenic therapy. Eur J Radiol. 84(6):1128-36, 2015
Telles BA et al: Imaging of the posttherapeutic brain. Top Magn Reson Imaging. 24(3):147-54, 2015
Furuta T et al: Molecular analysis of a recurrent glioblastoma treated with bevacizumab. Brain Tumor Pathol. 31(1):32-9, 2014
Shim H et al: Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. AJR Am J Roentgenol. 203(2):W158-65, 2014
Kothari PD et al: Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am J Neuroradiol. 34(9):1752-7, 2013
Fatterpekar GM et al: Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum--use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 198(1):19-26, 2012
Yamasaki F et al: Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment. Eur J Radiol. 81(10):2805-10, 2012
Gupta A et al: Isolated diffusion restriction precedes the development of enhancing tumor in a subset of patients with glioblastoma. AJNR Am J Neuroradiol. 32(7):1301-6, 2011
Hygino da Cruz LC Jr et al: Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 32(11):1978-85, 2011
Sorensen AG et al: A "vascular normalization index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69(13):5296-300, 2009
Related Anatomy
Loading...
Related Differential Diagnoses
Loading...
References
Tables
Tables
KEY FACTS
Terminology
Imaging
Top Differential Diagnoses
Clinical Issues
TERMINOLOGY
Abbreviations
Vascular endothelial growth factor (VEGF)
Synonyms
Treatment effect, Avastin effect
Definitions
Antiangiogenic agents may substantially reduce contrast enhancement in glioblastoma (GBM) related to reduced vascular permeability rather than actual tumor response
Bevacizumab (Avastin): Anti-VEGF antibody is main antiangiogenic agent currently used for treatment of recurrent malignant gliomas
Cediranib: VEGF receptor tyrosine kinase inhibitor; has been tested in recent high-grade glioma treatment trials with similar effects
Enzastaurin: Inhibits protein kinase C-β; non-VEGF antiangiogenic agent
IMAGING
General Features
MR Findings
Imaging Recommendations
DIFFERENTIAL DIAGNOSIS
PATHOLOGY
General Features
CLINICAL ISSUES
Presentation
Natural History & Prognosis
DIAGNOSTIC CHECKLIST
Consider
Image Interpretation Pearls
Selected References
Auer TA et al: Evaluation of the apparent diffusion coefficient in patients with recurrent glioblastoma under treatment with bevacizumab with radiographic pseudoresponse. J Neuroradiol. 46(1):36-43, 2019
Strauss SB et al: Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Radiol Clin North Am. 57(6):1199-216, 2019
van Dijken BRJ et al: Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging. 49(1):11-22, 2019
Kong Z et al: Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas. Neuroimage Clin. 20:51-60, 2018
Barajas RF Jr et al: Assessing biological response to bevacizumab using 18F-fluoromisonidazole PET/MR imaging in a patient with recurrent anaplastic astrocytoma. Case Rep Radiol. 2015:731361, 2015
Boxerman JL et al: Response assessment and magnetic resonance imaging issues for clinical trials involving high-grade gliomas. Top Magn Reson Imaging. 24(3):127-36, 2015
Ellingson BM et al: Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: a multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma. Int J Oncol. 46(5):1883-92, 2015
Hygino da Cruz LC Jr et al: Neuroimaging and genetic influence in treating brain neoplasms. Neuroimaging Clin N Am. 25(1):121-40, 2015
Stadlbauer A et al: Quantification of serial changes in cerebral blood volume and metabolism in patients with recurrent glioblastoma undergoing antiangiogenic therapy. Eur J Radiol. 84(6):1128-36, 2015
Telles BA et al: Imaging of the posttherapeutic brain. Top Magn Reson Imaging. 24(3):147-54, 2015
Furuta T et al: Molecular analysis of a recurrent glioblastoma treated with bevacizumab. Brain Tumor Pathol. 31(1):32-9, 2014
Shim H et al: Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. AJR Am J Roentgenol. 203(2):W158-65, 2014
Kothari PD et al: Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am J Neuroradiol. 34(9):1752-7, 2013
Fatterpekar GM et al: Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum--use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 198(1):19-26, 2012
Yamasaki F et al: Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment. Eur J Radiol. 81(10):2805-10, 2012
Gupta A et al: Isolated diffusion restriction precedes the development of enhancing tumor in a subset of patients with glioblastoma. AJNR Am J Neuroradiol. 32(7):1301-6, 2011
Hygino da Cruz LC Jr et al: Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 32(11):1978-85, 2011
Sorensen AG et al: A "vascular normalization index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69(13):5296-300, 2009
STATdx includes over 200,000 searchable images, including x-ray, CT, MR, and ultrasound images. To access all images, please log in or subscribe.