link
Bookmarks
Superior Parietal Cortex (Areas 5, 7)
Jeffrey S. Anderson, MD, PhD; Jared A. Nielsen, PhD
To access 4,300 diagnoses written by the world's leading experts in radiology, please log in or subscribe.Log inSubscribe

Location and Boundaries

  • Location

    • Boundaries

      Function

      • Complex or Higher Order Visual Information

        • Multisensory Attention and Motor Planning

          • Memory

            Structural Connections

            • Cortical

              • Subcortical

                Functional Connections

                • Coactive Regions

                  • Associated Literature Keywords (NeuroSynth)

                    Areas 5- and 7-Associated Disorders

                    • Dyslexia

                      Selected References

                      1. Caspari N et al: Functional similarity of medial superior parietal areas for shift-selective attention signals in humans and monkeys. Cereb Cortex. 28(6):2085-99, 2018
                      2. Huk AC et al: The role of the lateral intraparietal area in (the study of) decision making. Annu Rev Neurosci. 40:349-72, 2017
                      3. Van Essen DC et al: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex. 22(10):2241-62, 2012
                      4. Zhang S et al: Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage. 59(4):3548-62, 2012
                      5. Marcus DS et al: Informatics and data mining tools and strategies for the human connectome project. Front Neuroinform. 5:4, 2011
                      6. Peyrin C et al: Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. Brain Lang. 118(3):128-38, 2011
                      7. Anderson JS et al: Topographic maps of multisensory attention. Proc Natl Acad Sci U S A. 107(46):20110-4, 2010
                      8. Blankenburg F et al: Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex. 20(11):2702-11, 2010
                      9. Harrison A et al: "What" and "where" in the intraparietal sulcus: an FMRI study of object identity and location in visual short-term memory. Cereb Cortex. 20(10):2478-85, 2010
                      10. Nelson SM et al: A parcellation scheme for human left lateral parietal cortex. Neuron. 67(1):156-70, 2010
                      11. Santens S et al: Number processing pathways in human parietal cortex. Cereb Cortex. 20(1):77-88, 2010
                      12. Sestieri C et al: Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. J Neurosci. 30(25):8445-56, 2010
                      13. Szczepanski SM et al: Mechanisms of spatial attention control in frontal and parietal cortex. J Neurosci. 30(1):148-60, 2010
                      14. Vidyasagar TR et al: Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 14(2):57-63, 2010
                      15. Margulies DS et al: Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A. 106(47):20069-74, 2009
                      16. Silver MA et al: Topographic maps in human frontal and parietal cortex. Trends Cogn Sci. 13(11):488-95, 2009
                      17. Xu Y: Distinctive neural mechanisms supporting visual object individuation and identification. J Cogn Neurosci. 21(3):511-8, 2009
                      18. Xu Y et al: Selecting and perceiving multiple visual objects. Trends Cogn Sci. 13(4):167-74, 2009
                      19. Scheperjans F et al: Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex. 18(9):2141-57, 2008
                      20. Scheperjans F et al: Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex. 18(4):846-67, 2008
                      21. Choi HJ et al: Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol. 495(1):53-69, 2006
                      22. Tanabe HC et al: The sensorimotor transformation of cross-modal spatial information in the anterior intraparietal sulcus as revealed by functional MRI. Brain Res Cogn Brain Res. 22(3):385-96, 2005
                      23. Piazza M et al: Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron. 44(3):547-55, 2004
                      Related Anatomy
                      Loading...
                      Related Differential Diagnoses
                      Loading...
                      References
                      Tables

                      Tables

                      Location and Boundaries

                      • Location

                        • Boundaries

                          Function

                          • Complex or Higher Order Visual Information

                            • Multisensory Attention and Motor Planning

                              • Memory

                                Structural Connections

                                • Cortical

                                  • Subcortical

                                    Functional Connections

                                    • Coactive Regions

                                      • Associated Literature Keywords (NeuroSynth)

                                        Areas 5- and 7-Associated Disorders

                                        • Dyslexia

                                          Selected References

                                          1. Caspari N et al: Functional similarity of medial superior parietal areas for shift-selective attention signals in humans and monkeys. Cereb Cortex. 28(6):2085-99, 2018
                                          2. Huk AC et al: The role of the lateral intraparietal area in (the study of) decision making. Annu Rev Neurosci. 40:349-72, 2017
                                          3. Van Essen DC et al: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex. 22(10):2241-62, 2012
                                          4. Zhang S et al: Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage. 59(4):3548-62, 2012
                                          5. Marcus DS et al: Informatics and data mining tools and strategies for the human connectome project. Front Neuroinform. 5:4, 2011
                                          6. Peyrin C et al: Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. Brain Lang. 118(3):128-38, 2011
                                          7. Anderson JS et al: Topographic maps of multisensory attention. Proc Natl Acad Sci U S A. 107(46):20110-4, 2010
                                          8. Blankenburg F et al: Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex. 20(11):2702-11, 2010
                                          9. Harrison A et al: "What" and "where" in the intraparietal sulcus: an FMRI study of object identity and location in visual short-term memory. Cereb Cortex. 20(10):2478-85, 2010
                                          10. Nelson SM et al: A parcellation scheme for human left lateral parietal cortex. Neuron. 67(1):156-70, 2010
                                          11. Santens S et al: Number processing pathways in human parietal cortex. Cereb Cortex. 20(1):77-88, 2010
                                          12. Sestieri C et al: Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. J Neurosci. 30(25):8445-56, 2010
                                          13. Szczepanski SM et al: Mechanisms of spatial attention control in frontal and parietal cortex. J Neurosci. 30(1):148-60, 2010
                                          14. Vidyasagar TR et al: Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 14(2):57-63, 2010
                                          15. Margulies DS et al: Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A. 106(47):20069-74, 2009
                                          16. Silver MA et al: Topographic maps in human frontal and parietal cortex. Trends Cogn Sci. 13(11):488-95, 2009
                                          17. Xu Y: Distinctive neural mechanisms supporting visual object individuation and identification. J Cogn Neurosci. 21(3):511-8, 2009
                                          18. Xu Y et al: Selecting and perceiving multiple visual objects. Trends Cogn Sci. 13(4):167-74, 2009
                                          19. Scheperjans F et al: Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex. 18(9):2141-57, 2008
                                          20. Scheperjans F et al: Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex. 18(4):846-67, 2008
                                          21. Choi HJ et al: Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol. 495(1):53-69, 2006
                                          22. Tanabe HC et al: The sensorimotor transformation of cross-modal spatial information in the anterior intraparietal sulcus as revealed by functional MRI. Brain Res Cogn Brain Res. 22(3):385-96, 2005
                                          23. Piazza M et al: Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron. 44(3):547-55, 2004